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Abstract

Available experimental data and linear stability analysis indicate that the secondary flow configurations of convection in a rectangular duct with
a saturated porous medium heated from below and through which an axial flow is maintained are down-stream moving three-dimensional rolls
(T modes) for low Péclet number or stationary longitudinal rolls (L rolls) otherwise. In this paper, a weakly nonlinear analysis is used and coupled
envelope equations are derived to study the competition between T modes and L rolls in the neighborhood of a double bifurcation point where
these two convective configurations become simultaneously unstable. An entire stability diagram of homogeneous nonlinear states is obtained and
the evaluated mean heat transfer is found to compare well with experimental data. Moreover parameter boundaries for absolute and convective
instability of the basic state with respect to T modes and L rolls are determined. In the case of convective instability, we obtain an analytical
criterion which specifies conditions about the observability of either T modes or L rolls at the onset of convection. This criterion implies an
explicit relation between the spatial growth of the two patterns and the magnitude of their inlet forcing. Suitable numerical simulations of the
envelope equations perfectly validate the derived analytical criterion. On the other hand, in the region of absolute instability, it is found that the L

roll/T mode transition observed in early experiments, is ascribed to the transition to absolute instability of the basic state with respect to L rolls.
Additionally, numerical solutions as well as both temporal and spatial nonlinear stability theory demonstrate that the mixed mode is an unstable
state in agreement with experimental results. Throughout this paper, major similarities as well as differences with the corresponding problem in
pure fluids are particularly highlighted.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

While the problem of free-convective flows in porous me-
dia has been extensively investigated [1], little attention has
been devoted to the mixed convection in a differentially heated
porous layer with a superimposed through-flow. As far as the
authors are aware, the numerical investigation of mixed con-
vection flows in porous media conducted by Dufour and Néel
[2] is the only published paper focusing on the nonlinear prop-
erties of two-dimensional patterns. Within the framework of
Darcy’s law, these authors demonstrated that the nonlinear two-
dimensional solutions are saturated travelling rolls in the bulk
region with envelopes in the form of fronts near the entrance
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zone. The global frequency, the wavelength and the phase ve-
locity of the travelling rolls were also computed in [2]. From
the linear point of view, temporal stability analysis of the prob-
lem of mixed convection in porous media of the kind performed
by some investigators (Prats [3], Rees [4], Delache et al. [5])
consider perturbations which amplify in time, starting from an
initial spatially periodic perturbation, i.e. they assume that the
perturbation wave number k is real while its frequency ω is
complex. Such analysis allow us to distinguish between sta-
ble and unstable configurations without taking into account an
important feature inherent to open flow systems, namely the
spatial propagation of the unstable flow structures. In fact, it
is well known that instability is described as convective pro-
vided an initial small perturbation localized in space is con-
vected downstream leaving the flow domain unperturbed, as
time tends to infinity. On the contrary, instability is described
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Fig. 1. Flow regime map in the (Pe, Ra) plane for pattern observed in [10–12]
with glass beads of diameter 4 mm and water: T modes (•) and L rolls (�).
Experimental runs are indicated by the numbers. The missed numbers are in
a fluctuating region. The curve represents the border between convective and
absolute instability predicted theoretically in [9].

as absolute whenever the initial small localized perturbation
expands both in the upstream and downstream directions as
time grows, affecting eventually the whole flow domain. Such
a fundamental distinction was originally proposed in the field
of plasma physics by Briggs [6] and Bers [7] and has since
been developed in hydrodynamic stability by several authors
(see Huerre and Monkewitz [8]). The analysis presented by
Delache et al. [9] dealt with a linear spatio-temporal stability
analysis to discriminate between convective and absolute na-
ture of the instability of the basic flow with respect to moving
three-dimensional modes (T modes) as well as to stationary
longitudinal rolls (L rolls) with their rotation axes parallel to
the through-flow direction. In relation to experiments, the most
interesting result stemming from this analysis is that the border
between the convective and the absolute instability of moving
T modes corresponds perfectly to the experimentally observed
transition from T modes to L rolls and vice versa. This fea-
ture is illustrated in Fig. 1 where we reproduce the flow regime
map in the filtration Rayleigh–Péclet number plane (Pe, Ra) of
different patterns observed in laminar mixed convection regime
i.e. Ra < 260 (Combarnous [10], Combarnous and Bia [11],
Combarnous and Bories [12]) as well as the convective/absolute
instability boundaries of T modes as they have been determined
in [9]. Having ascertained that the experimentally observed
transition between L rolls and T modes is ascribed to the tran-
sition to absolute instability, experimental results raise further
questions:

(i) by which physical mechanisms the system preferentially
selects L rolls rather than T modes in the convectively un-
stable region (i.e. region below the curve of Fig. 1)?
(ii) why experiments [10–12]) revealed the existence of a re-
gion associated with either L rolls (points 5, 36, 38 of
Fig. 1) or T modes in the absolutely unstable domain (i.e.
region above the curve of Fig. 1)?

(iii) why some temperature recordings [10–12] have shown the
coexistence of L rolls and T modes, albeit in different
parts of the medium?

(iv) can theory predict the experimental results which revealed
that the existence of a horizontal through-flow does not
modify the vertical mean heat transfer compared with nat-
ural convection?

The main purpose of this paper is to provide some answers to
these questions. This task will be accomplished by taking into
account two major ingredients, namely the nonlinearities of the
problem and the presence of a persistent forcing of an initial
perturbation. Therefore this work is a natural extension to [9].

The temporal linear stability analysis performed in [5,9] con-
cluded that there exists a critical Reynolds number Re∗

K based
on the permeability of the medium in such a way that for
ReK < Re∗

K the T modes propagating with phase velocity equal
to Pe become unstable first at Ra3D

c . While for ReK > Re∗
K

the most unstable disturbances are L rolls (Ra‖
c < Ra3D

c ). For

ReK = Re∗
K and Ra3D

c = Ra‖
c = Ra∗ both the T modes and

the L rolls become simultaneously unstable and the linear the-
ory fails to predict the bifurcation processes and to elucidate
the dominant convection patterns. Therefore nonlinear stability
analysis is needed to study the competition between T modes
and L rolls in the neighborhood of the double bifurcation point
(Re∗

K , Ra∗). It should be emphasized that there is a close anal-
ogy between the present porous medium and the pure-fluid case
which is generally known as the Poiseuille–Rayleigh–Bénard
(P.R.B.) problem (see a recent bibliographical review on the
P.R.B. flows by Nicolas [13]). We believe that any insight
gained into the qualitative features of P.R.B. problem is a
valuable aid to our understanding of the mixed convection in
porous media and conversely. In P.R.B. problem the nonlinear
interaction between T modes and the L rolls was investigated
notably by Brand et al. [14] and Müller et al. [15]. They ap-
plied a weakly nonlinear theory for perturbations which modu-
lated both on time and space and obtained a coupled envelope
equations. As pointed out by Kato and Fujimura [16], the dis-
agreement between the predictions of [14] and [15] concerning
the stability of a mixed mode comes from the difference of
the coefficients of nonlinear interaction terms in their respec-
tive model. Therefore Kato and Fujimura [16] used the two
time-scale analysis and derived rigorously a set of two coupled
Landau equations, each of them describing the time evolution
of L rolls and T modes respectively. Their reduced model is
adequate to predict stable patterns for given sets of parameters
but it does not take into account the modulation of the convec-
tive patterns which occur on a spatial scale. On the other hand,
in a recent paper dealing with P.R.B. problem in the case of
infinite lateral extent of the fluid medium, Carrière et al. [17]
derived in a consistent manner envelope equations describing
separately L rolls for O(1) Reynolds numbers and T modes in
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the limit of small Reynolds numbers and examined their stabil-
ity properties. In this paper a systematic derivation of coupled
Ginzburg–Landau equations valid in the neighborhood of the
double bifurcation point (Re∗

K , Ra∗) will be presented and the
stability of its homogeneous solutions will be studied. In the
framework of the derived reduced model, the mean heat trans-
fer is evaluated and compared to experimental data. Moreover
an analytical analysis and a series of suitable numerical simula-
tions of the coupled Ginzburg–Landau equations are performed
to elucidate, in relation to experiments, the role of inlet pertur-
bations upon the selection of patterns in the unstable regions.

2. Mathematical formulation

All results are obtained for an isotropic and homogeneous
porous layer of infinite horizontal extent of rectangular cross
section with thickness H and width aH saturated by a fluid.
The medium is heated from below and cooled from the top
with impermeable and insulated lateral sides. The bottom wall
is at a uniform temperature T0, while the top wall is at a uni-
form, but lower, temperature T1. The solid matrix is supposed to
be in thermal equilibrium with the fluid. Furthermore, we con-
sider that a through-flow is driven by a pressure gradient in the
x-direction. The Forchheimer correction to Darcy’s law is used
and the Boussinesq approximation is employed. We choose H ,
H 2(ρc)/kstg, T0 − T1, kstg/(H(ρc)f ) and kstgμ/(K(ρc)f ) as
references for length, time, temperature, filtration velocity and
pressure. Here, kstg, (ρc), (ρc)f ,K and μ are, respectively, the
effective stagnant thermal conductivity, the overall heat capac-
ity of the porous medium per unit volume, the heat capacity per
unit volume of the fluid alone, the permeability of the medium
and the viscosity of the fluid. Under these conditions the dimen-
sionless equations governing the flow are

�∇ · �V = 0

�V + F‖ �V ‖ �V = −�∇P + RaT �ez

∂T

∂t
= − �V · �∇T + �∇2T (1)

with boundary conditions:

�V · �ez = 0 at z = 0,1

�V · �ey = 0 at y = 0, a (2)

T = 1 at z = 0; T = 0 at z = 1
∂T

∂y
= 0 at y = 0, a (3)

with an imposed through-flow:

a∫
0

1∫
0

�V · �ex dy dz = a Pe (4)

where P, �V ,T , �ez are the pressure, the filtration velocity, the
temperature and the vertical upwards unit vector respectively.

The non-dimensional parameters are: the filtration Rayleigh
number Ra = KgαH(T0 − T1)(ρc)f /kstgν, the Péclet number
Pe = UH(ρc)f /kstg, the lateral aspect ratio a and the Forch-
heimer number F = C[K1/2kstg/Hν(ρc)f ] which represents
the nonlinear drag effect due to the solid matrix.

U , g, ν, α and C are respectively, the average filtration ve-
locity imposed at the entrance of the channel, the gravitational
acceleration, the kinematic viscosity, the volumetric coefficient
of thermal expansion and a dimensionless form-drag constant.

A basic solution of the problem (1)–(4) is a combination of
a vertical thermal stratification and a homogeneous flow in the
�ex direction:

�Vb = Pe · �ex, Tb = 1 − z and

Pb = Ra
(
z − z2/2

) − Pe
(
1 + ReK

)
x (5)

where ReK = F Pe = C(UK1/2/ν) is a Reynolds number
based on the permeability of the medium. The Darcy model is
recovered if ReK = 0 (i.e. F = 0).

Now, as usual, the stability of the basic solution (5) is studied
by super-imposing general perturbations onto the basic solu-
tion:

( �V ,T ,P ) = ( �Vb + −→v (x, y, z, t), Tb + θ(x, y, z, t),

Pb + p(x, y, z, t)
)

(6)

Substitution of (6) into (1), yields a set of flow perturbation
equations which can be written in a compact form:

(I∂/∂t + L)� = N(�,�) (7)

Where the vector � is simply � = [u,v,w, θ,p]T . The expres-
sions of the linear operators I and L and the nonlinear part of
the dynamics N are given in Appendix A.

The system (7) must be supplemented with boundary condi-
tions:

w = θ = 0 at z = 0,1 (8)

v = ∂θ/∂y = 0 at y = 0, a (9)

It has been demonstrated in [5,9] that for a Rayleigh number
larger than a critical value Rac which depends on Reynolds
number ReK the basic state (5) is unstable. The linear theory
shows that in this case convective configurations with exponen-
tially growing amplitudes will develop in the form of:

(i) oscillatory three-dimensional instabilities (T modes) at
Ra = Ra3D

c for ReK < Re∗
K (see Fig. 2 for an illustration),

(ii) stationary longitudinal rolls (L rolls) with their rotation
axes parallel to the through-flow direction at Ra = Ra‖

c for
ReK > Re∗

K , where,

Ra3D
c = (√

1 + ReK (1 − m2
3D/a2) + √

1 + 2 ReK

)2
π2

(10)

and

Ra‖
c = π2(a/m‖ + m‖/a)2(1 + ReK) (11)

The two neutral curves intersect when Ra3D
c = Ra‖

c = Ra∗
and ReK = Re∗ .
K
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Fig. 2. Example of moving three-dimensional modes: four trajectories of fluid
particles are shown as they are computed in a fixed reference frame together
with streamlines in (x, z) and (y, z) planes determined in a frame moving with
the main velocity U . The arrows indicate the through-flow direction.

We recall that this linear description is only valid in the
initial growth stage, where the amplitudes are infinitesimally
small. If we want to describe the nonlinear dynamic behavior,
we must take into account the nonlinear interactions between
the linearly unstable modes. A detailed analysis is possible
if the Rayleigh number is only slightly larger than its criti-
cal value. This weakly nonlinear analysis has been applied to
various physical systems such as Rayleigh–Bénard convection
[18], Poiseuille flow [19], binary fluid convection in porous
media [20], nonlinear optics [21] or more recently, Poiseuille–
Rayleigh–Bénard problem [17].

The purpose of the following section is to derive two coupled
envelope equations, the so called coupled Ginzburg–Landau
equations, describing the interaction between (see Appen-
dix A):

1) T modes: w = Aei(kx−ωt) sin[πz] cos

[
m

a
πy

]
with k �= 0 and (12)

2) L rolls: w = B sin[πz] cos

[
m

a
πy

]
(13)

in the neighborhood of a double bifurcation point (Re∗
K, Ra∗)

where, according to the linear theory, the two convective con-
figurations simultaneously become unstable.

3. Weakly nonlinear analysis

3.1. Derivation of coupled envelope equations

In order to derive the coupled envelope equations we restrict
ourselves to Rayleigh number Ra and Reynolds number ReK

for which holds:

Ra = Ra∗ + ε2Ra2 and ReK = Re∗
K + ε2Re2

where ε � 1, Ra2 = O(1) and Re2 = O(1) (14)
From mathematical point of view parameter ε should be ‘small
enough’ in order to be able to perform a perturbation analysis.
A look at the modes which experience growth above thresh-
old will give us the right scalings for the slow time and space
variables. These scalings can be estimated by expanding the
complex frequency ω obtained by a linear stability analysis in
a Taylor series near (Re∗

K, Ra∗, k∗
c ):

ω − ω∗
c = (∂ω/∂k)∗c (k − k∗

c ) + (∂2ω/∂k2)∗c (k − k∗
c )2/2

+ (∂ω/∂Ra)∗c (Ra − Ra∗)
+ (∂ω/∂ReK)∗c (ReK − Re∗

K) + · · · (15)

where ∗
c means evaluation at critical conditions exactly at the

double bifurcation point (Re∗
K, Ra∗). We recall that while for T

modes ω∗
c = k∗

c Pe, the L rolls are characterized by ω∗
c = k∗

c = 0,
whereas (∂ω/∂k)∗c = Pe is the group velocity for both pat-
terns. By taking into account the relation (14) together with
the fact that (∂2ω/∂k2)∗c = O(1), a balance between all terms
of (15) suggests that (k − k∗

c ) = O(ε), ω − ω∗
c = O(ε2) and

(∂ω/∂k)∗c = Pe = O(ε). While the two first assumptions sug-
gest that the modulation is at slow spatial and temporal scales,
which are described by the coordinates

X = εx and τ = ε2t (16)

the assumption that Pe = O(ε) is a necessary condition to derive
the coupled envelope equations in a consistent manner. More-
over, this assumption allows us to locate correctly the transition
from convective to absolute instability as we will see later on
and as it was pointed out by Carrière et al. [17] in their study of
P.R.B. problem. Otherwise if Pe = O(1) the scaling (16) is no
longer valid and must be replaced by a long time scale τ = ε2t

and a long spatial scale ζ = ε (x + Pe t) which is a slow, mov-
ing coordinate, travelling with the group velocity Pe.

After this clarification, the derivation of the coupled enve-
lope equations is described below, assuming that Pe = ε P̃e with
P̃e = O(1) and that the amplitudes A and B appearing in (12),
(13) are such that A = A(X,τ) and B = B(X, τ).

We expand the solution of (7) with respect to ε,

�(x,y, z, t,X, τ ) = ε�1 + ε2�2 + ε3�3 + · · · (17)

where the arguments of the left-hand side are repeated on the
right-hand side. Substituting ∂/∂t → ∂/∂t + ε2∂/∂τ , ∂/∂x →
∂/∂x + ε∂/∂X, according to (16) and inserting (14) as well as
Pe = ε P̃e into (7) yields at successive orders of ε,

(I∂/∂t + L0)�1 = 0 (18)

(I∂/∂t + L0)�2 = −L1�1 + N2 (19)

(I∂/∂t + L0)�3 = −L1�2 − L2�1 − I∂/∂τ�1 + N3 (20)

The explicit form of L0, L1, L2, N2 and N3 is given in Appen-
dix A.

For the sake of brevity, we formally describe the method
of the derivation of coupled envelope equations and the reader
should consult Ref. [22] for technical details. At the leading or-
der the O(ε) equations are identical to the equations solved for
the linear stability analysis [5,9]. The solution at this order is
given in Appendix A. The right-hand side of Eq. (19) depends



A. Delache, M.N. Ouarzazi / International Journal of Thermal Sciences 47 (2008) 709–722 713
only on �1, which is already calculated at order ε. Therefore,
Eq. (19) is an inhomogeneous boundary-value problem for �2
that we have solved by integration. After inserting �1 and �2
into Eq. (20), there is no real need to solve this equation. In-
stead, by projecting this equation onto �̂1, which is the solution
to the adjoint problem (18), the right-hand side of Eq. (20)
yields a solvability condition. By re-introducing the original
variables x = X/ε, t = τ/ε2, P̃e = Pe/ε, Ra2 = (Ra−Ra∗)/ε2,
Re2 = (ReK − Re∗

K)/ε2 and re-defining ε�1 as �1 these solv-
ability conditions are the coupled envelope equations for A and
B ,

∂A/∂t = −Pe ∂A/∂x + νA∂2A/∂x2 + γ0A

− γ1|A|2A − γ2|B|2A (21)

∂B/∂t = −Pe ∂B/∂x + νB∂2B/∂x2 + λ0B

− λ1|B|2B − λ2|A|2B (22)

where we have set: γ0 = γ3(Ra − Ra∗)/Ra∗ − γ4(ReK −
Re∗

K)/Re∗
K and λ0 = λ3(Ra − Ra∗)/Ra∗ − λ4(ReK − Re∗

K)/

Re∗
K .
Each of these envelope equations features linear growth

(term in [γ3(Ra − Ra∗)/Ra∗ − γ4(ReK − Re∗
K)/Re∗

K ] A in
(21)), advection (−Pe ∂A/∂x), diffusion (νA∂2A/∂x2), non-
linear saturation (−γ1|A|2A) and nonlinear cross-saturation
(−γ2|B|2A), each term having a physical relevance.

The coefficients νA, νB , γi and λi (i = 1,2,3,4) are func-
tions of the lateral aspect ratio a and the Forchheimer number
F . For porous media used in experiments [10–12], for which
the aspect ratio is a = 6.9 and the values of F are very small
(O(10−4)), we find that the bifurcation is supercritical (i.e.
γ1 > 0 and λ1 > 0). In this case the computed coefficients are:

Ra∗ = 39.53, Re∗
K = 0.19 ∗ 10−2, γ1 = 0.323

γ2 = 0.232, γ3 = 0.5 ∗ Ra∗, γ4 = 22.13 ∗ Re∗
K

νA = 0.5, νB = 0.025, λ1 = 0.125, λ2 = 0.472

λ3 = 0.5 ∗ Ra∗, λ4 = 19.96 ∗ Re∗
K

3.2. Nonlinear homogeneous states and their stability

Eqs. (21), (22) possess four homogeneous and stationary so-
lutions,

(i) A = B = 0 for all γ0 and λ0 (conduction state).
(ii) B = 0, A2 = A2

3D = γ0/γ1 with γ0 > 0 (saturated T

modes).
(iii) A = 0, B2 = B2

L = λ0/λ1 with λ0 > 0 (saturated L rolls).
(iv) [A2,B2] = [A2

m,B2
m] = [(γ2λ0 − γ0λ1)/(γ2λ2 − γ1λ1);

(γ0λ2 − γ1λ0)/(γ2λ2 − γ1λ1)] with γ2λ0 − γ0λ1 > 0 and
γ0λ2 − γ1λ0 > 0 (mixed mode, i.e. existence of both ho-
mogeneous T modes and L rolls in the porous layer).

It is a straightforward matter to determine the stability of
the various equilibrium solutions to small perturbations (see for
example [16]). Here we focus on the results and we omit the
detail.
(i) The conduction state is stable providing that γ0 < 0 and
λ0 < 0.

(ii) The saturated T modes are stable if λ0 − λ2γ0/γ1 < 0 and
unstable otherwise.

(iii) The saturated L rolls are stable if γ0 − γ2λ0/λ1 < 0 and
unstable otherwise.

(iv) Since γ2λ2 − γ1λ1 < 0 the mixed mode is found to be un-
stable.

The results of the existence and the stability of the equilib-
rium solutions are qualitatively summarized in the parameter
plane ((ReK − Re∗

K)/Re∗
K ; (Ra − Ra∗)/Ra∗) and are illustrated

in Fig. 3. We also indicate the dynamic behavior leading to
these equilibrium solutions in the (A(t),B(t)) space. Fig. 3 re-
quires some comments:

In the region A3D the only stable convective patterns are T

modes. These modes become simultaneously stable with BL

rolls in the region BL, A3D meaning that the form of the bifur-
cated pattern depends on the initial conditions. In the region BL

the only stable convective patterns are L rolls. The mixed mode
is unstable irrespective of the values of ReK and Ra numbers.
For a = 6.9 and F ≈ O(10−4), we find that the six straight lines
of Fig. 3 are very close to the horizontal axis; therefore the re-
gion BL, A3D occupies nearly the whole upper half parameters
plane of this figure.

3.3. Average heat transfer

The coupled envelope equations may be used to evaluate
the Nusselt number measuring the total vertical heat transfer
through the layer reduced by its conductive contribution. In the
regions of parameter space where L rolls and/or T modes are
stable, the mean Nusselt number N is defined [1] as

N = 1 + 〈wθ〉 (23)

where 〈wθ〉 has the meaning of average in space of the quantity
wθ for L rolls, and its average in space as well as in time over
a cycle for T modes.

Substituting the solutions for L rolls and for T modes at
different orders after eliminating the slow space scale on the
grounds presented in Section 3.1 yields the following relation-
ships

NL − 1 = αL

{
Ra/Ra‖

c(ReK,a) − 1
} ∀Ra � Ra‖

c (24)

N3D − 1 = α3D
{
Ra/Ra3D

c (ReK,a) − 1
} ∀Ra � Ra3D

c (25)

where it is obvious that NL = 1 and N3D = 1 ∀Ra < Ra‖
c and

∀Ra < Ra3D
c respectively, indicating that the convection heat

transfer branches off from the conductive heat transfer line at
the critical value of the Rayleigh number. The slope for the
Nusselt curve is αL = 2 for L rolls, while the slope α3D for
T modes depends on a as it is shown in Fig. 4.

For a fixed value of a, as relations (10), (11) show that for
both L rolls and T modes, the critical Rayleigh number for
convection is greater than the corresponding Rayleigh number
without through-flow, it can be concluded that the presence of
a through-flow has a retarding effect on heat transfer. This be-
havior is similar to that encountered in P.R.B. problem as it
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Fig. 3. Bifurcation diagrams in (
ReK−Re∗

K
Re∗

K
, Ra−Ra∗

Ra∗ ) plane. 0 denotes the conduction state, A3D denotes the transverse modes, BL denotes the longitudinal rolls,

and M denotes the mixed modes. A state without parentheses denotes a stable solution, whereas with parentheses it denotes an unstable solution. The succession of
phase portraits for different regions is shown in the (A(t),B(t)) plane where the filled circle denotes the stable homogeneous solution and the empty circle denotes
the unstable one.
Fig. 4. Coefficient α3D of the Nusselt number N3D versus the aspect ratio a.

is reported by Nicolas (see [13] and references therein). Never-
theless, for porous media and for the average filtration velocity
used in experiments [10–12]) we find that ReK remains very
small (ReK = O(10−3)). The consequences of the weak ReK

dependence of Ra‖
c(ReK) and Ra3D

c (ReK) are that the average
heat transfer is not significantly influenced by the presence of
an horizontal through-flow. This prediction is in a qualitative
good agreement with the experimental findings [10–12].

The variations of Ra‖
c(ReK,a)/ (1 + ReK) in function of

the lateral aspect ratio a, combined with the expression (24)
suggest that for integer values of a, NL is the same as that rep-
resenting the mean heat transfer for infinite lateral aspect ratio.
Otherwise the effect of the lateral confinement is to reduce the
mean heat transfer. In P.R.B. problem, among very rare in-
vestigations on the lateral confinement dependence of Nusselt
number, Chen and Lavine [23] and Narusawa [24] performed
numerical simulations of L rolls. While the numerical results
of [23] concluded that a finite lateral aspect ratio raises the heat
transfer, the converse is found in [24]. It can be concluded that
as far as P.R.B. problem is concerned, the influence of the lat-
eral confinement on heat transfer is not completely understood.

Although mixed convection in porous media and P.R.B.

problem are qualitatively similar in a number of respects, the
important differences may be explained by the effect of the
solid matrix which plays a fundamentally important role in
the determination of heat transfer. Indeed, in porous media the
Nusselt number is not only a function of Rayleigh number but
also depends on the solid-fluid combinations. In particular, it
is well known that widely different conductivities of the solid
and fluid phases cause local thermal nonequilibrium [25,26].
Much depends on other factors. If the microscopic length scale
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Fig. 5. Nu as a function of Ra: computed results from this study for L rolls
(−−) and for T modes (− · −) and experimental results from Ref. [12] where
the filled circle denotes T modes and the empty circle denotes L roll.

is very small indeed, then local thermal equilibrium is much
more likely. Here we restrict the quantitative comparison with
experiments to the case of water-glass combination for which
the thermal conductivity of the porous matrix is close to that of
the fluid. The heat transfer results corresponding to the exper-
imentally observed T modes and L rolls (see Fig. 14 of [10]
or Fig. 52 of [12]) together with theoretical predictions (24),
(25) with a = 6.9 are displayed in Fig. 5. The Nu versus Ra
plot of this figure indicates that up to Ra 
 120, the theoreti-
cal results of N3D are in agreement with the measured Nusselt
number corresponding to T modes. Concerning the predicted
NL, any serious conclusion can not be drawn because as it is
shown in Fig. 5, we only dispose of one NL experimental da-
tum in the range of Rayleigh numbers we explore in this study
(i.e. Ra < 140).

4. Pattern selection in the unstable region

In [9], we performed a spatio-temporal stability analysis and
showed the relevance of the distinction between convective and
absolute instability of both T modes and L rolls. Indeed, com-
parison with early experiments [10–12]) indicates that the the-
oretical transition curve from convective to absolute instability
in the Rayleigh–Péclet number plane corresponds perfectly to
the observed transition from moving T modes to stationary L

rolls and vice versa. Although this result is very important, the
concept of absolute instability can not explain the experimen-
tally observed L rolls in the convectively unstable parameters
(i.e. region below the curve of Fig. 1). This section aims at
characterizing flow patterns that can arise from amplification
of permanent source of perturbations. This permanent source
may be thought of as describing unavoidable inlet disturbances
and thermal or other noise sources in laboratory experiments.
4.1. Absolute versus convective instability of the conductive
state

It is straightforward to calculate the boundary for absolute
instability within the context of envelope equations (21), (22).
Consider a small spatially localized perturbation of the conduc-
tive state (5). Under the linear part of envelope equations (21),
(22), the amplitude evolution of T modes and L rolls is domi-
nated by the exponential factor [27]

(GA,GB) = 1/(4πt)1/2

× (e(γ0−(x/t−Pe)2/4νA)t , e(λ0−(x/t−Pe)2/4νB)t ) (26)

The ray along which the maximum growth rate is reached is
defined by x/t = Pe. Thus, for γ0 = 0 and λ0 = 0 we reobtain
the convective threshold for T modes and L rolls respectively.
The condition for the onset of absolute instability can be found
by vanishing the growth rate for a given x as t → ∞, that is
x/t → 0. This yields:

γ0 = Pe2/4νA and λ0 = Pe2/4νB (27)

The absolute instability boundary for T modes and for L rolls is
then obtained by substituting γ0, λ0, νA and νB by their expres-
sions in functions of dimensionless parameters Ra, Pe, the lat-
eral aspect ratio a and the Forchheimer number F . For a = 6.9
and F = 10−4 these boundaries are plotted in the (Pe, Ra) plane
of Fig. 6 as a dashed line for T modes and a dotted-dashed line

Fig. 6. Stability curves in the (Pe, Ra) plane. The conductive state is convec-
tively unstable with respect to both T modes and L rolls in the region I below
the dashed line. It becomes absolutely unstable with respect to T modes in the
region II. The dotted-dashed line separates the region II from the region III,
where the basic state is absolutely unstable with respect to both two-patterns.
The dotted lines in the region I represent the L rolls/T modes transition as it
is predicted by the linear criterion (35) in presence of inlet forcing (36) with
α = 0.001, α = 0.01 and α = 0.1. The arrows indicate how these transition
curves move when α is increased. The combined symbols (◦•) represent the L

rolls/T modes transition as it was found by numerical simulations of the cou-
pled envelope Eqs. (21)–(22) with α = 0.001 and α = 0.01.
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for L rolls. The absolute instability boundary for T modes was
compared to the one that was determined from the full disper-
sion equation of the problem in [9]. We found that the results
stemming from the envelope equation approximations are valid
in the whole range of moderate Péclet numbers (i.e. Pe < 5) and
the accuracy is excellent for small ones.

4.2. Spatial amplification in the convectively unstable region

In the first part of this subsection, we use the linear ver-
sions of envelope equations (21), (22) to characterize the spatial
amplification of perturbations in the convectively unstable pa-
rameter region defined by γ0 < Pe2/4νA and λ0 < Pe2/4νB

(i.e. region I of Fig. 6). Following Deissler [28], the amplitudes
can be expanded as

[
A(x, t),B(x, t)

] =
+∞∫

−∞

[
A0(ω),B0(ω)

]
e−i(kx+ωt)dω (28)

where the frequency ω is real and the wave number k = kr + iki

is complex. Here A0(ω) and B0(ω) represent Fourier trans-
forms of some persistent, however small, perturbations A(x =
0, t) and B(x = 0, t) of the flow at the entrance cross-section
of the porous medium. These inlet perturbations may be ampli-
fied further downstream with a spatial amplification described
by ki . If we insert (28) into the linear parts of (21), (22) we ob-
tain the dispersion relation which can be written, for example
for A, in the spatial form kA(ω),

kA(ω) = i(Pe −
√

Pe2 − 4νA(γ0 + iω))/2νA (29)

If the dimensionless parameters of the problem allow a spatial
growth (i.e. ki > 0), a band of frequencies ω with ω− < ω <

ω+ may be amplified. The limits ω± of this band are found by
imposing ki = 0 and read

ω± = ±Pe
√

γ0/νA for A and

ω± = ±Pe
√

λ0/νB for B (30)

The frequency ωM which gives the maximum spatial growth
rate is found from ∂ki/∂ω = 0, giving

ωM = 0 and kr = 0 (31)

The corresponding maximum spatial growth rate is

kA
i = (

Pe −
√

Pe2 − 4γ0νA

)
/2νA for A and

kB
i = (

Pe −
√

Pe2 − 4λ0νB

)
/2νB for B (32)

It is important to note that the spatial growth rate is defined only
if Pe2 − 4γ0νA > 0 for A and Pe2 − 4λ0νB > 0 for B . These
conditions are not satisfied in the absolutely unstable parameter
region meaning that this spatial approach is not valid when the
instability becomes absolute.

We now turn to the fundamental question related to the pre-
diction of the onset of either T modes or L rolls in the pa-
rameter range where both patterns are convectively unstable.
According to (31) and (32) T modes envelope and L rolls en-
velope with the maximum spatial growth rate take the form
[A(x),B(x)] = [A0(ωM = 0) ekA
i x, B0(ωM = 0) ekB

i x]. Let us
define an entrance length xh as the distance from the inlet cross
section to a spatial position at which nonlinear terms begin to
saturate the spatial growth. More precisely, we suppose that L

rolls amplitude reaches the half of its saturated amplitude BL

at xh

B0ekB
i xh = BL/2 (33)

The condition that must be fulfilled if we assume that L

rolls dominate over T modes at the spatial location xh (i.e.
B0ekB

i xh > A0ekA
i xh ) reads

(1/xh) ln(B0/A0) > kA
i − kB

i (34)

Substituting the expression of xh from (33) into the inequality
(34) yields

ln(B0/A0)/ ln(BL/2B0) > (kA
i /kB

i ) − 1 (35)

Note that if B0 = A0, the condition (35) is reduced to kB
i > kA

i .
We emphasize that there is no information available about the
experimental perturbation intensity in [10–12]. Moreover, it is
not even clear that the inlet perturbation A0 for T modes and B0
for L rolls should be of the same order of magnitude. There-
fore we consider the more general case where the quantities
kA
i , kB

i ,B0 and A0 act in concert in the selection process. In the
following, let us assume that A0 and B0 are related to saturated
amplitudes of T modes and L rolls as:

A0 = αA3D and B0 = αBL (36)

and illustrate the selection process in the (Pe, Ra) plane as it
is predicted by the criterion (35) for different values of small
α. This task is achieved by using expressions (32) to calculate
kA
i /kB

i for varying values of Pe and Ra. Fig. 6 displays the re-
sults for α = 0.001, 0.01 and 0.1. For a fixed value of α, and
below the corresponding dotted curve of this figure where the
condition (35) is satisfied, L rolls are expected to dominate over
T modes, while the converse occurred above this curve. We also
note that as soon as α is augmented gradually, the curve describ-
ing a L roll/T mode transition approaches the border between
convective and absolute instability.

All these predictions are associated with linear properties in
the sense that both amplitudes A(x) and B(x) must be small. As
a consequence, this linearized picture is expected to be valid at
the best up to only x = xh, a spatial position at which nonlinear
effects begin to be non-negligible. As the downstream position
x becomes larger than xh, a nonlinear spatial analysis is re-
quired to clarify which pattern may be selected. This task will
be achieved in two ways. We first assume that at large x, L rolls
have reached their saturated amplitude BL = √

λ0/λ1. There-
fore, using the nonlinear equation (21) we determine the spatial
growth k

A,B
i associated with the most amplified T modes ac-

cording to linear theory (i.e. mode with ωM = 0) in presence
of saturated L rolls. Similarly, Eq. (22) allows us to calculate
the maximum spatial growth k

B,A
i of L rolls in presence of

saturated amplitude A3D = √
γ0/γ1 of T modes. After some

calculations one gets

k
A,B = (

Pe −
√

Pe2 − 4νA(γ0 − γ2λ0/λ1)
)
/2νA for A (37)
i
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and

k
B,A
i = (

Pe −
√

Pe2 − 4νB(λ0 − λ2γ0/γ1)
)
/2νB for B (38)

Eq. (37) states that k
A,B
i < 0 provide that γ0 − γ2λ0/λ1 < 0

meaning that T modes are spatially damped in the space region
where saturated L rolls are well developed. Similarly, accord-
ing to Eq. (38) L rolls can not experience any spatial growth in
presence of uniform T modes if λ0 − λ2γ0/γ1 < 0. Moreover
for a = 6.9 and F ≈ O(10−4), inequalities γ0 − γ2λ0/λ1 < 0
and λ0 − λ2γ0/γ1 < 0 hold for almost all combinations of
Pe–Ra numbers. Consequently, homogeneous T modes and L

rolls can not develop at the same spatial location. These results
stemming from the nonlinear spatial stability approach are con-
sistent with the nonlinear temporal stability analysis performed
in Section 3.1 which concluded that the mixed mode is an un-
stable thermo-convective configuration.

5. Numerical results

In this section we describe results of numerical simulations
of the coupled envelope equations (21), (22) above threshold,
since they allow to investigate the validity of the above analyti-
cal findings as well as to understand some experimental results.
In fact, the difficulty to handle mathematically the nonlinear
original theoretical model (1) leading to the lack of analytical
results makes relevant the use of coupled envelope equations.
Furthermore, it has often been checked that their validity qual-
itatively extends far beyond the instability threshold. The nu-
merical experiments provide a test of the following predictions:

(i) that in the convectively unstable parameter region (region
I of Fig. 6), the nonlinear development of L rolls or T

modes depends on the magnitude of the inlet forcing, and
that the location of L roll/T mode transition is ruled by the
linear criterion (35);

(ii) that coexisting convective states with saturated amplitudes
of L rolls and T modes at the same spatial location are
unstable solutions;

(iii) that the dominant patterns are T modes in the Pe–Ra pa-
rameter region where these modes are absolutely unstable,
whereas L rolls still convectively unstable (region II of
Fig. 6).

In addition, we also investigate the selection process in the
region III of Fig. 6 where both T modes and L rolls are ab-
solutely unstable.

To integrate the coupled envelope equations (21), (22) we
use a Crank–Nicholson (semi-implicit) discretization in time
whereas the spatial derivatives are discretized by centered, sym-
metric second-order formulas. As it is well known, the Crank–
Nicholson scheme is always numerically stable when the so-
lution is physically stable. However, Cossu and Loiseleux [29]
showed that when the solution becomes physically unstable, a
Crank–Nicholson scheme with a spatial grid size of �x and
a time resolution of �t may experience a numerical transition
from absolute to convective instability and vice versa. In the
framework of the Landau–Ginzburg equation, these authors de-
rived conditions on the discretization parameters �x and �t in
order to avoid such numerical transition. Therefore, our numer-
ical experiments are performed with �x sufficiently small in
order to respect the criterium derived in [29]. The length of the
porous medium is imposed to be 50. The outlet boundary con-
ditions are chosen so that the amplitudes A and B are assumed
to be equal to their saturated values,

A(x + dx, t + dt)/A(x, t) = A(x, t)/A(x − dx, t − dt)

B(x + dx, t + dt)/B(x, t) = B(x, t)/B(x − dx, t − dt) (39)

5.1. Simulations in the convectively unstable region

In the Pe–Ra parameter space where both L rolls and T

modes are convectively unstable (i.e. region I of Fig. 6), we
performed numerical simulations in the absence of any inlet
forcing with two different initial conditions: in the first case,
both the amplitude A for T modes and the amplitude B for L

rolls were initialized by a localized spatial Gaussian function;
in the second case, we started from a randomly distributed per-
turbation of A and B .

Both the initial conditions gave rise to the growth of wave
packets which migrated downstream with time, leaving the flow
domain unperturbed, as shown in Fig. 7. These results suggest
that it is necessary to revisit the interpretation of experimental
observations [10–12]) concerning the formation and develop-
ment of L rolls in the convectively unstable region. In fact, the
convective nature of the instability mechanism implies that the
L rolls actually observed in the laboratory may arise from spa-
tial amplification of some persistent perturbations of the flow.
Although the actual perturbation source may be spatially dis-
tributed, one may picture it at the entrance cross-section of the
channel. This picture is conceptually useful because the per-
turbation furthest upstream has the most time to grow before
reaching a given axial position. Various questions then arise.

Does the forced development of L rolls eventually lead to the
establishment of an equilibrium amplitude BL? Is such an equi-
librium amplitude dependent on the magnitude of the forced
perturbations at the entrance cross-section? More important,
how does the selection of L rolls rather than T modes depend
on the inlet forcing?

Answering these questions may be pursued through a series
of suitable numerical experiments with an imposed inlet forc-
ing. Here, the strength of the inlet forcing is simply connected
to saturated amplitudes A3D and BL by (36).

In order to avoid any repetition in the next subsection, we re-
port in Fig. 8 the whole results obtained by numerous numerical
tests, not only in the region I , but also in the regions II and III
of Fig. 6. Specifically, for parameter range where the instability
is convective, Fig. 8 demonstrates that the region I is divided in
two parts; in one part L rolls (◦) are dominant, while in the other
part T modes (•) win the competition between the two types
of patterns. Furthermore, we have checked the relevance of the
linear criterion (35) to represent the numerical L roll/T mode
transition. Fig. 6 displays the numerical results corresponding
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Fig. 7. Transient behavior of the envelope |A| for T modes (−) and |B| for L rolls (−−) in convective unstable regime at t = 1 (b) and t = 7.4 (c) generated by a
Gaussian profile of |A| and |B| (a). The expansion of wavepackets in the down-stream direction is clear from this figure. Parameters are Pe = 9.6 and Ra = 79.
Fig. 8. Flow regime map for patterns obtained by numerical simulations of cou-
pled envelope equations (21), (22) in the three regions of the (Pe, Ra) plane: T

modes (•) and L rolls (◦).

to two inlet perturbations (36) with α = 0.001 and α = 0.01 re-
spectively. Quite remarkably, this figure demonstrates that the
analytical linear criterion (35) perfectly captures the numerical
transition from L rolls to T modes and vice versa.
In order to exemplify the competition between L rolls and T

modes, we present the results of numerical tests corresponding
to an increase or to a decrease of the flow rate Pe, keeping the
porous thermal Rayleigh number Ra constant. The first simu-
lation is carried out with Ra = 79 and Pe = 9.62 (point 1 in
Fig. 8) in presence of inlet forcing (36) with α = 0.001 and
starting with small random perturbations for A and B . Fig. 9(a)
shows that the linear spatial growth rate of A overwhelms that
of B near the entrance channel so that T modes develop down-
stream while L rolls are damped. The results obtained from this
run were used as initial conditions for the next run performed
with increasing Péclet number to Pe = 13.46 keeping Ra = 79
(point 2 in Fig. 8). Nonlinear competition between L rolls and
T modes is displayed in Fig. 9(b) for a transient state which
shows the coexistence of these two types of patterns in differ-
ent areas of the channel; L rolls occupy the part near the inlet
while T modes are well developed in the second part of the
medium. This result is consistent with experimental observa-
tions [12]. When time grows progressively, the front separating
L rolls from T modes travels in the down-stream direction with
a velocity equals to Pe and eventually reaches the outlet of the
channel. The resulting long-time patterns are saturated L rolls
(Fig. 9(c)). Starting a run from these developed L rolls with the
same Rayleigh number and returning to Pe = 9.62 we recover
T modes (Fig. 9(d)), meaning that the transition process does
not experience any hysteresis effect. In addition, numerical so-
lutions presented in Fig. 9(a,c,d) show that when one type of
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Fig. 9. Envelope |A| for T modes (−) and |B| for L rolls (−−) as a function of
the spatial coordinate x in the convectively unstable parameters. The Rayleigh
number is kept constant at Ra = 79, while the Péclet number increases from
Pe = 9.62 (a) to Pe = 13.46 (b, c) and returns to its initial value Pe = 9.62 (d).
These parameters are associated to points 1 and 2 of Fig. 8. The numerical tests
are performed in presence of inlet forcing (36) with α = 0.1%.

Fig. 10. Envelope |B| of L rolls with Ra = 69.18 and Pe = 15.34 for different
level of inlet noise for A(x, t) and B(x, t).

patterns reaches its saturated amplitude, the other pattern is spa-
tially damped. This result confirms our analytical predictions
that mixed mode, i.e. coexisting saturated L rolls and saturated
T modes at the same spatial location, is an unstable solution.

We emphasize that in all performed simulations in the con-
vectively unstable region, the amplitude of saturated L rolls is
found to be independent of the magnitude of the inlet perturba-
tion. This is shown in Fig. 10 where three different responses to
inlet forcing are reported. Note that the smaller the magnitude
of the inlet perturbation, the farther the cross-section where the
amplitude saturation is achieved.
5.2. Simulations in the absolutely unstable region

The second numerical runs are devoted to characterize pat-
terns that dominate in the Pe–Ra parameter space where the
basic state is absolutely unstable to T modes (regions II and III
of Fig. 6). The flow structures observed in our numerical ex-
periments are previously summarized by the flow regime map
shown in Fig. 8. This figure shows that a nonlinear development
of T modes occurs in the region II as it is expected. The most
striking result is that parameters of region III promote the de-
velopment of L rolls, although, at the linear level, the basic state
is also absolutely unstable with respect to T modes. We believe
that the nonlinear cross-coupling between the amplitudes A and
B may explain this selection process, which is found to be in-
dependent both of initial conditions and of the level of the inlet
perturbation. Additionally, it is found that the T mode/L roll
transition can be well characterized by the curve of absolute in-
stability of the basic state with respect to L rolls (i.e. the curve
separating regions II and III of Fig. 6).

Selected results from numerical runs are presented in the fol-
lowing to illustrate the competition between T modes and L

rolls and to test that L rolls that appear in region III of Fig. 6 are
not sustained by a finite entrance forcing. Starting from a local-
ized disturbance at Ra = 79 and Pe = 0.77, the spatio-temporal
evolution of the T modes and the L rolls envelopes |A| and
|B| is described in Fig. 11. For small and intermediate values
of time (Fig. 11(b,c)), two transient wave-packets of T modes
develop, travelling in opposite directions; a wave-packet of L

rolls is seen to be sandwiched between them. As time grows, a
new L rolls front is created near the entrance cross-section and
invades into T modes state (Fig. 11(d)). The resulting long-time
pattern is a self-sustained L rolls structure (Fig. 11(e)).

Finally, we have examined qualitatively some further suc-
cessive transitions of flow patterns observed in experiments,
namely the transitions from point 34 to point 35 and then to
point 36 of the flow regime map of Fig. 1 or the transition
from point 38 to point 39 of the same figure. In order to mimic
these experimental transitions which occur for Ra ≈ 130 and
2 < Pe < 40, numerical tests are performed by fixing Rayleigh
number at Ra = 75 and adjusting Pe to its value for points 3
(Pe = 4), 4 (Pe = 16) and 5 (Pe = 1) of Fig. 8. The numeri-
cal experiment is started from the saturated developed T modes
(point 3 of Fig. 8) in the presence of a forcing perturbation (36)
at the entrance cross section with α = 0.001. Increasing Pe to
reach the point 4 of Fig. 8, after transient states, T modes pat-
tern is substituted by a fully developed L rolls pattern. If we
suddenly decrease Pe to reach the point 5 of Fig. 8, L rolls
structure remains the dominant mode. By ramping Pe forth and
back between points 5 and 3 of Fig. 8, we verified that the tran-
sition between L rolls and T modes is free of a hysteresis.

6. Conclusion

In this paper we have studied the nonlinear behavior of
mixed convection generated by both a unidirectional uniform
flow and a vertical temperature gradient in a rectangular long
porous medium. The mathematical model based on the Forch-
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Fig. 11. Spatio-temporal evolution for four selected times, t = 0.9 (b), t = 20 (c), t = 40 (d), t = 100 (e) of the envelope |A| for T modes (−) and |B| for L rolls
(−−) built from localized Gaussian initial conditions (a). The parameters are Ra = 79 and Pe = 0.77.
heimer correction to Darcy’s law allows for a basic state, which
for sufficiently large Rayleigh number Ra turned out to be un-
stable. A perturbation analysis of the basic state showed in
linear theory that convection started to develop in the form of
either moving three-dimensional modes (T modes) if Reynolds
number ReK is below a critical value Re∗

K or in the form of
stationary longitudinal rolls (L rolls) otherwise. A weakly non-
linear theory , which is valid near the double bifurcation point
(Re∗

K, Ra∗), has been applied in order to derive coupled enve-
lope equations for the marginally unstable T modes and L rolls.
The procedure is similar to that presented by Kato and Fujimura
[16], who obtained a coupled Landau equations describing the
long-time behavior of the competition between T modes and
L rolls in the Poiseuille–Rayleigh–Bénard problem. However,
the situation near critical conditions is such, that a narrow spec-
trum of waves become unstable. Taking that into account, we
obtained coupled envelope equations describing not only the
temporal modulations of the envelope amplitudes of T modes
and L rolls but also their modulations on a long spatial scale.
The coupled envelope equations allow us to classify all the pos-
sible equilibrium solutions and their respective stability and to
obtain a typical bifurcation diagram in which mixed mode com-
posed of the two convective configurations is always unstable.
The evaluated average heat transfer is found to decrease with
increasing the magnitude of the imposed horizontal flow. Nev-
ertheless, for weak values of ReK , it is found in agreement
with early experimental measurements [12], that the average
heat transfer is not significantly influenced by the presence of
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an horizontal through-flow. Moreover, quantitative comparisons
demonstrate that up to three times the critical Rayleigh number,
the predicted Nusselt number compares well with experimental
data obtained with a water–glass combination [12].

The absolute and convective instability boundaries are de-
termined for the two kinds of competing patterns. Numerical
simulations of the coupled envelope equations with the con-
duction state imposed at the inlet of the porous medium reveal
that no pattern may be sustained in the convectively unstable
region. This, however, is an idealized result which is in con-
tradiction with actual experimental observations of well devel-
oped L rolls. We therefore examine how these unsatisfactory
predictions are modified in the presence of some permanent dis-
turbances located at the entrance cross-section of the channel.
Numerical simulations of coupled envelope equations demon-
strated that the nonlinear development of such perturbations is
shown to lead to either T modes or L rolls depending on the
magnitude of the inlet disturbances. Quite remarkably, numer-
ical results confirm that the observability of either of the two
patterns is ruled by an analytical criterion we derived in this
paper. In the Pe–Ra parameter space where the basic state is
absolutely unstable, it is found that the T mode/L roll transi-
tion observed in laboratory experiments, is well characterized
by the boundaries of absolute instability of the basic state with
respect to L rolls. In addition, the numerical solutions show that
the mixed mode, composed with the two types of pattern at the
same spatial location is an unstable mode, confirming the ana-
lytical predictions.

Appendix A

Under the assumption of weak perturbations, the term F‖ �V ‖
associated to Forchheimer’s correction reads:

F‖ �V ‖ = ReK + Fu + 1

2

F 2

ReK

(v2 + w2)

− 1

2

F 3

Re2
K

u(v2 + w2) + h.o.t.

where h.o.t. stands for higher order terms
The operators I and L of Eq. (7) are defined by

I =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

L =

⎡
⎢⎢⎢⎢⎢⎣

1 + 2ReK 0 0 0 ∂x

0 1 + ReK 0 0 ∂y

0 0 1 + ReK −Ra ∂z

0 0 −1 ∇2 0

∂x ∂y ∂z 0 0

⎤
⎥⎥⎥⎥⎥⎦
The nonlinear part N of Eq. (7) is as follows:

N(Φ,Φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Fu2 − 1
2F(v2 + w2)

−Fuv − 1
2

F 2

ReK
v(v2 + w2)

−Fuw − 1
2

F 2

ReK
w(v2 + w2)

−�v.∇θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

L0 is the linear operator L evaluated at the double bifurcation
point (Re∗

K,Ra∗).
At O(ε) we find that the eigenfunctions Φ1 are

Φ1 =

⎡
⎢⎢⎢⎢⎢⎣

u1,1ei(k∗
c x−ω∗

c t) cos(πz) cos(ly)

v1,1ei(k∗
c x−ω∗

c t) cos(πz) sin(ly)

w1,1ei(k∗
c x−ω∗

c t) sin(πz) cos(ly)

T1,1ei(k∗
c x−ω∗

c t) sin(πz) cos(ly)

P1,1ei(k∗
c x−ω∗

c t) cos(πz) cos(ly)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

u1,2 cos(πz) cos(l0y)

v1,2 cos(πz) sin(l0y)

w1,2 sin(πz) cos(l0y)

T1,2 sin(πz) cos(l0y)

P1,2 cos(πz) cos(l0y)

⎤
⎥⎥⎥⎥⎥⎦ + C.C.

with l = πm3D/a, l0 = πm‖/a and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,1 = ik∗
c A(X,τ)π(1+Re∗

K)

(2Re∗
K+1)l2+(k∗

c )2(1+Re∗
K)

v1,1 = − A(X,τ)πl(2Re∗
K+1)

(2Re∗
K+1)l2+(k∗

c )2(1+Re∗
K)

w1,1 = A(X,τ)

T1,1 = A(X,τ)

π2+l2+(k∗
c )2

P1,1 = −A(X,τ)π(1+Re∗
K)(2Re∗

K+1)

(2Re∗
K+1)l2+(k∗

c )2(1+Re∗
K)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,2 = 0

v1,2 = −B(X,τ)π
2l0

w1,2 = B(X,τ)
2

T1,2 = B(X,τ)

2(π2+l0
2)

P1,2 = −B(X,τ)π(1+F Pe∗)
2l0

2

At O(ε2), the operator L1 and the nonlinear part N2 are as fol-
lows

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 ∂X

0 0 0 0 0

0 0 0 0 0

0 0 0 P̃e∂x − 2∂2
X,x 0

∂X 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

N2 =

⎡
⎢⎢⎢⎢⎢⎣

−Fu2
1 − 1

2F(v2
1 + w2

1)

−Fu1v1

−Fu1w1

− �v1.∇θ1

0

⎤
⎥⎥⎥⎥⎥⎦
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At O(ε3), the expressions of the operator L2 and the nonlinear
part N3 are

L2 =

⎡
⎢⎢⎢⎢⎢⎣

2Re2 0 0 0 0

0 Re2 0 0 0

0 0 Re2 −Ra2 0

0 0 0 −∂2
X + P̃e∂X 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

N3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2Fu1u2 − F(v1v2 + w1w2)

−F(v1u2 + v2u1) − 1
2

F 2

ReK
v1(v

2
1 + w2

1)

−F(w1u2 + w2u1) − 1
2

F 2

ReK
w1(v

2
1 + w2

1)

−�v1.∇θ2 − �v2.∇θ1 − u1.∂Xθ1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
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